首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   546537篇
  免费   63100篇
  国内免费   6844篇
  2021年   7631篇
  2020年   5625篇
  2019年   6906篇
  2018年   8014篇
  2017年   6613篇
  2016年   9832篇
  2015年   14545篇
  2014年   16650篇
  2013年   20789篇
  2012年   24248篇
  2011年   23288篇
  2010年   15014篇
  2009年   13618篇
  2008年   18276篇
  2007年   18090篇
  2006年   16235篇
  2005年   15117篇
  2004年   14451篇
  2003年   13522篇
  2002年   12710篇
  2001年   23026篇
  2000年   23084篇
  1999年   18668篇
  1998年   6916篇
  1997年   7289篇
  1996年   6984篇
  1995年   6530篇
  1994年   6631篇
  1993年   6174篇
  1992年   14432篇
  1991年   13618篇
  1990年   13115篇
  1989年   12923篇
  1988年   11522篇
  1987年   11110篇
  1986年   10162篇
  1985年   9953篇
  1984年   8339篇
  1983年   7220篇
  1982年   5629篇
  1981年   5079篇
  1979年   7756篇
  1978年   5950篇
  1977年   5449篇
  1976年   5089篇
  1975年   5391篇
  1974年   5853篇
  1973年   5685篇
  1972年   5131篇
  1971年   4744篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
11.
12.
13.
14.
15.
16.
Electrical bursting oscillations of mammalian pancreatic beta-cells are synchronous among cells within an islet. While electrical coupling among cells via gap junctions has been demonstrated, its extent and topology are unclear. The beta-cells also share an extracellular compartment in which oscillations of K+ concentration have been measured (Perez-Armendariz and Atwater, 1985). These oscillations (1-2 mM) are synchronous with the burst pattern, and apparently are caused by the oscillating voltage-dependent membrane currents: Extracellular K+ concentration (Ke) rises during the depolarized active (spiking) phase and falls during the hyperpolarized silent phase. Because raising Ke depolarizes the cell membrane by increasing the potassium reversal potential (VK), any cell in the active phase should recruit nonspiking cells into the active phase. The opposite is predicted for the silent phase. This positive feedback system might couple the cells' electrical activity and synchronize bursting. We have explored this possibility using a theoretical model for bursting of beta-cells (Sherman et al., 1988) and K+ diffusion in the extracellular space of an islet. Computer simulations demonstrate that the bursts synchronize very quickly (within one burst) without gap junctional coupling among the cells. The shape and amplitude of computed Ke oscillations resemble those seen in experiments for certain parameter ranges. The model cells synchronize with exterior cells leading, though incorporating heterogeneous cell properties can allow interior cells to lead. The model islet can also be forced to oscillate at both faster and slower frequencies using periodic pulses of higher K+ in the medium surrounding the islet. Phase plane analysis was used to understand the synchronization mechanism. The results of our model suggest that diffusion of extracellular K+ may contribute to coupling and synchronization of electrical oscillations in beta-cells within an islet.  相似文献   
17.
Some P-450 systems, notably aromatase and 14-demethylase catalyse not only the hydroxylate reaction but also the oxidation of an alcohol into a carbonyl compound as well as a C---C bond cleavage process. All these reactions occur at the same active site. A somewhat analogous situation is noted with 17-hydroxylase-17,20-lyase that participates in hydroxylation as well as C---C bond cleavage process. The C---C bond cleavage reactions catalysed by the above enzymes conform to the general equation:

It is argued that all three types of reaction catalyzed by these enzymes may be viewed as variations on a common theme. In P-450 dependent hydroxylation the initially formed FeIII---O---O. species is converted into FeIII---O---OH and the heterolysis of the oxygen—oxygen bond of the latter then gives the oxo-derivative for which a number of canonical structures are possible; for example FeV = O ↔ (+.)FeIV = O ↔ FeIV---O.. One of these, FeIV---O. behaves like an alkoxyl radical and participates in hydrogen abstraction from C---H bond to produce FeIV---OH and carbon radical. The latter is then quenched by the delivery of hydroxyl radical from FeIV---OH. The latter species may thus be regarded as a carrier of hydroxyl radical. We have proposed that the C---C bond cleavage reaction occurs through the participation of the FeIII---O---OH species that is trapped by the electrophilic property of the carbonyl compound giving a peroxide adduct that fragments to produce an acyl—carbon cleavage. Scientific developments leading up to this conclusion are considered. In the first author's views,

“The study of mechanisms is not a scientific but a cultural activity. Mechanisms do not aim at an absolute truth but are intended to be a “running” commentary on the status of knowledge in a field. As the structural knowledge in a field advances Mechanisms evolve to take note of the new findings. Just as a constructive “running” commentary provides the stimulus for higher standards of performance, so Mechanisms call for better and firmer structural information from their practitioners”.  相似文献   

18.
19.
20.
The affinity of Ag interaction with a B cell's membrane IgM (mIgM) receptors has long been considered to play a critical role in the in vivo clonal selection of B lymphocytes. This study has examined a possible basis for this affinity selection at the level of Ag induction of sequential B cell activation phenomena, i.e., elevated membrane class II MHC expression (G0* excitation), G1 entry, and S phase entry. Functional experiments with model bivalent Ag, i.e., a group of murine mAb of diverse intrinsic binding affinities for human IgM, revealed that the minimal affinity requisites for inducing the above phenomena vary significantly. At a ligand concentration of 100 micrograms/ml, the induction of increased class II MHC expression, G1 entry, and S phase had minimal affinity thresholds of Ka approximately 0.2 to 2 x 10(6) M-1; approximately 7 x 10(6) M-1; and approximately 1 x 10(8) M-1, respectively. Pulsing studies revealed that whereas high affinity ligand was essential at later periods in the prolonged (greater than 24 h) signaling period that leads to S phase entry, mAb with significantly lower affinity were competent at signaling during the first 24 h. Because all but the lowest affinity ligand (Ka = 2 x 10(5) M-1) could effectively modulate mIgM, and furthermore, because B cells show a substantial increase in surface area during activation, it appears likely that one factor contributing to the higher affinity requirements for induction of late activation phenomena is a progressive decrease in the density of mIgM on the responsive B cells. These studies suggest that whereas only a small proportion of B cells, i.e., those with relatively high affinity for an antigenic epitope, will be triggered to clonally expand on encountering a paucivalent Ag in the absence of T cell help, a much wider spectrum of the B cell repertoire will be triggered to a state of partial activation. How the presence of ancillary T cells and cytokines may facilitate the full clonal expansion of these latter cells is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号